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The effects of sidewall heat loss on convection in a 
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The onset of natural convection is considered in a vertically oriented, thin, finite slab 
of saturated porous media when sidewall heat transfer exists. First, a linear stability 
analysis is carried out for a system with impermeable boundaries. The sidewall 
temperature increases linearly with depth while the smaller-area endwalls are 
insulated. Convection occurs when the Rayleigh number R is asymptotically large 
relative to the inverse square of the horizontal aspect ratio, H2 < 1. The convection 
pattern is composed of an integer number of vertically oriented three-dimensional, 
finger-like cells. The wavelength of each cell, relative to the larger horizontal 
dimension'of the slab, is proportional to H i .  This somewhat surprising type of modal 
configuration is also found when there is a specified vertical mass flux through the 
slab. In this second example one considers the characteristics of the 3-dimensional 
fully developed solution for the thin vertical-slab problem which is compatible with 
a linear temperature increase on the vertical walls. When R is like that found in the 
first problem, closely spaced finger-like cells are found superimposed on the generally 
upward fluid flow. It is concluded that sidewall heat loss has a very strong stabilizing 
effect on the initiation of buoyancy-induced convection relative to the more 
traditional situation where side- and endwalls are insulated. Furthermore the 
appearance of slender, finger-like convection cells is characteristic of motion in a 
narrow vertical-slab configuration. Finally it is noted that the precise modal 
configuration selected by a system is extremely sensitive to the value of the Rayleigh 
number. 

1. Introduction 
We consider here the character of buoyancy-induced convection in a vertically 

oriented, thin, finite slab of liquid-saturated porous media shown in figure 1. The 
upper and lower horizontal surfaces are held at constant but different temperatures, 
while the large vertical surfaces (sidewalls) have a specified linear temperature 
increase with depth. The latter condition permits heat transfer through the sidewall, 
in contrast with the more frequently employed insulated boundary condition (see 
e.g. Beck 1972; Zebib t Kassoy 1977). Sidewall heat loss should have a considerable 
effect on the conditions necessary for onset of convection in the geometry of figure 1, 
relative to those found for insulated sidewalls. It is our intent here to describe that 
effect for a traditional closed system (impermeable boundaries) and when there is a 
specified vertical mass flux through the slab. 

Beck's (1972) linear stability study of a porous rectangular parallelepiped with 
insulated sidewalls demonstrates the sensitivity of modal configuration to box 
dimensions. The mode-dependent value of the critical Rayleigh number R, for onset 
of convection is frequently 4x2, or in the vicinity of that value, for constant-viscosity 
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FIGURE 1. The thin, vertical, finite slab withdimensionless coordinatesdefined in (2.4a) and (2.8c,d),  
where H, 1 and HI = O(1). On the sidewalls y = 0, H, the temperature increases linearly with 
depth. The endwalls x = 0, HI may have either the same temperature distribution or may be 
insulated. 

systems with the exception of tall columnar geometries. In  contrast, when sidewall 
heat loss is permitted Lowell & Shyu (1978) find that R, is significantly larger than 
4n2 for boxes with similar dimensions for length, width and height, and dramatically 
larger for configurations like that shown in figure 1. Murphy’s (1979) linear stability 
study of a vertical thin finite slab yields similar results. Davis (1967) and Catton (1970) 
have also observed the relative stabilizing effect of sidewall heat loss for pure 
viscous-fluid systems. 

Lowell & Shyu use a Galerkin technique to show that for a configuration like that 
in figure 1, with insulated endwalls, the most likely mode is a two-dimensional roll 
cell with its axis parallel to the long horizontal dimension of the slab. The critical 
Rayleigh-number value is found to be only yo less than a nearby three- 
dimensional mode. This type of sensitivity of configuration to Rayleigh-number value 
is unlike that found in insulated systems. Lowell (1977) attempted to verify his 
surprising numerical result with an approximate analytical solution based on a 
sidewall velocity boundary condition that facilitated a separation of variables 
solution. An asymptotic analysis, valid for a very-thin-slab configuration, showed 
that the two-dimensional roll cell was to be expected and yielded a critical Rayleigh 
number about 10 Yo below the value obtained numerically. Lowell attributed the 
difference to the altered sidewall boundary condition, Given the extreme sensitivity 
of the mode to Rayleigh number, Lowell’s comparison does not verify the Galerkin 
result in a definitive way. To do this effectively one must find an analytical solution 
for a thin-slab Configuration based on the accurate sidewall boundary conditions. In 
the first part of the present paper we develop a rational asymptotic analysis for linear 
stability in the configuration of figure 1. The results show that the modal prediction 
given by Lowell & Shyu does not correspond to the global minimum of the Rayleigh 
number. Rather, closely spaced, finger-like, three-dimensional cells characterize the 
onset of convection. A high level of modal configuration sensitivity to Rayleigh- 
number value is found to exist. 

Effects of sidewall heat loss on stability in a thin vertical slab have also been 
considered by Murphy (1979).The saturated porous medium, in the configuration of 
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figure 1, is itself surrounded by an impermeable heat-conducting material. The 
stability calculation includes the thermal response of the latter to convective 
instability in the former. A simplification in the analysis is introduced by integrating 
the three-dimensional describing equations across the narrow dimension of the porous 
slab. The resulting two-dimensional system describes planar motion in the (x, 2)-plane 
*of figure 1 in terms of temperature and velocity distributions averaged across the 
narrow dimension of the slab. Heat loss to the impermeable material is represented 
by a heat-sink term in the averaged-energy equation. The stability calculation implies 
that the onset of convection is characterized by the formation of closely spaced 
finger-like cells in the (2, 2)-plane of figure 1, at a critical Rayleigh-number value of 
the magnitude found by Lowell & Shyu but smaller in value. This modal configuration 
is, however, entirely different from that found by Lowell & Shyu and Lowell (1977). 
Of course Murphy's calculation cannot really be compared with the others, because 
the averaged equations cannot describe motion and the details of the heat-transfer 
process in the (y, z)-plane of figure 1. If we recall that the Lowell & Shyu prediction 
is for a two-dimensional roll in the (y,z)-plane, then it is clear that Murphy's 
calculation cannot be used as the basis for a definitive evaluation of that result. 

Murphy's prediction of finger-like cells is itself novel in the context of stability 
theory. Modal configurations of this type have been considered by Robinson & 
O'Sullivan ( 1976) for high-Rayleigh-number planar steady convection with insulated 
vertical boundaries. Numerical computations were used to determine the cell width 
that maximizes the vertical heat flux. The relationship with Murphy's modelling is 
tenuous at best, because the boundary conditions on the vertical walls are so different. 
In  addition the flow is planar relative to Murphy's averaged three-dimensional 
configuration. 

In  contrast with the studies of convection processes in closed systems, Kassoy & 
Zebib (1978) considered the effects of a specified mass flux through a system like that 
in figure 1 when the Rayleigh number is large. In this case the temperature increases 
linearly with depth on both the side- and the endwalls. A hot slug flow is introduced 
below the bottom horizontal boundary. The evolution of that flow, as it rises in the 
slab and loses heat fo the sidewall, is described. It is shown that the velocity and 
temperature distributions are invariant to the x-direction of figure 1 (two-dimensional 
flow with respect to the (y, 2)-plane) as long as the Rayleigh number is sufficiently 
small. When the critical value is approached from below a fully three-dimensional 
solution is found to exist as the result of induced natural convection superimposed 
on the net upflow. In the second part of the present paper we describe the 
three-dimensional solutions for larger values of the Rayleigh number. It is shown that 
closely spaced, fmger-like cells exist, superimposed on the net upflow through the 
system. Here again one finds a high degree of modal sensitivity to the Rayleigh-number 
value. 

2. Linear stability theory 

figuration of figure 1 can be written as 
The non-dimensional equations describing heat and mass transport in the con- 

u,+vy+wz = 0,  (2.1) 
T-1 

u = - p , ,  v = - p  u,  w = - p , + - ,  
7 

(2.2 a-c) 
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The variables are defined in terms of dimensional (primed) quantities by 

(2.4u, b) 

(2.5u, b) 

(2.7a, b)  

where the subscript zero refers to conditions at  the upper horizontal surface 
temperature Ti. The reference density, permeability and dynamic viscosity are 
represented by pi,  ki and v i  respectively, and g‘ is the acceleration due to gravity. 
Pr, is the Prandtl number based on the mean conductivity of the saturated porous 
material. Ti represents the lower horizontal-surface temperature. The derivation of 
(2.1)-(2.3) is based on the Boussinesq approximation and the assumption of constant 
kinematic viscosity. 

The dimensional vertical extent of the slab in figure 1 is L’. Its  larger horizontal 
dimension is 2xL, while the smaller value is 2yL. Generally yL is much smaller than 
L‘ and 2xL, which are of comparable magnitudes. 

The linear stability calculation will be based upon the boundary conditions used 
by Lowell & Shyu (1978): 

w = O ,  T = l  ( z = O ) ,  ( 2 . 8 ~ )  

w = O ,  T = ~ + T  ( ~ = - 1 ) ,  (2.8b) 

u = 0, T, = 0 (x = 0, H , ) ,  with H ,  = 2x1, - - 2x,, ( 2 . 8 ~ )  
L 

2YL - v = O ,  T = l - ~ z  ( y = O , H , ) ,  withH - 7 - 2 ~ ~ .  ,- L 
(2.8d) 

The sidewall temperatures increase linearly with depth, while the endwalls are 
insulated. A solution is to be obtained for a thin slab defined by the condition H ,  + 1 
with H, = O(1). In  this sense it is useful to employ the stretched variable 

Y = YIH,  (2.9) 

in the formulation of the linear describing equation. Furthermore, the temperature 
disturbance 0 can be defined by 

T = 1 -72+7e. (2.10) 

Finally, it is recognized from the results of Lowell & Shyu and Murphy that the 
critical Rayleigh number is larger when H ,  -+ 1. The appropriate scaling is defined 

R = R/Hi. (2.11) by 

The linear describing system, derived from (2.1)-(2.3) and (2.8)-(2.11), can be 
written as 

~~(e,,+e,,+2e,,,,)+~~(~~,,+2(e,,,,+e,,,,))+~,,+~~,, = 0, (2.12) 

e = ezz = o ( z  = 0, - I ) ,  ( 2 . 1 3 ~ )  
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ex = exzx = 0 (x = 0, H I ) ,  

e = 0, q(e,,,+e,,,)+~e,+e,,, = o ( i j  = o , q .  
A separation-of-variables solution 

8 = f(y;R,SZ, H2) sinxz cosax 

can be used to find 

p+ (R- 2 3  [Q2+x2])fN + (-q R522+H; [522+7C*]2)f = 0, 

f(0) =f(1) = 0, 

(f"+(R-q[a2+x2])f)(O71) =o .  
The wavenumber 52 in (2.14), found by satisfying (2.13b), is 

mx a=--, m = 0 , 1 , 2 , 3  ,..., 
HI 

where the appropriate value of m must be found. 
The exact solution to (2.15) can be written as 

f = sinAy+a cosAy+b sinhry-a coshrij, 

where 

A b = -  
B '  

sin A + b sinh r 
cosh r- cos h ' 

a =  

A = A3-A(R-~(Q2+x2)),  

B = r3+r(R-q(522+x2)), 

(sinh r sin A )  A2 + 2B( 1 - cosh r cos A )  A - B2 sinh r sin A = 0. 
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(2.134 

(2.13~)  

(2.14) 

( 2 . 1 5 ~ )  

(2.15b) 

(2 .15~)  

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20a, b) 

(2.21) 

(2.22) 

(2.23) 

Equations (2.20) and (2.23) are obtained by satisfying the boundary conditions in 
(2.15 b,  c) .  

An asymptotic solution to (2.17)-(2.23) is to be found in the limit H,+O. As a first 
example we consider the case Q = 0, corresponding to the two-dimensional solution 
of Lowell & Shyu (1978). Asymptotic estimates of (2.17)-(2.23) can be used to show 
that f x sin2xij+O(fl) when R= 4 x 2 + 0 ( q )  is the minimum scaled Rayleigh 
number. Lowell (1977) obtained an identical result using approximate velocity 
boundary conditions on the sidewalls. In contrast, when D = 0(1) + 0 the lowest- 
order approximation to (2.23) can be expressed as 

(2.24) 

It follows that the basic approximation to R must satisfy x < < 2x along with 
similar intervals beginning at 3x, 5 x ,  .. .. Unfortunately (2.24) indicates that, when a 
is minimized (at K), a+ 00. This result suggests that a Iarge-wavenumber solution 
(Q 9 1) is available at an R-value less than that found by Lowell (1977) and Lowell 
& Shyu (1978). 
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The large-wavenumber solution is found from (2.17)-(2.23) by developing 
asymptotic expansions for H ,  +O with a scaled form $2 = a/&, limH,+,, S = 0. A dis- 
tinguished limit (Cole 1968) is obtained only if S = H i ,  The scaled Rayleigh number, 
found from (2.23), 

(2.25) 

can be minimized to the critical value 

.Re - R' + H ,  &R + O ( H i )  (2.26 a) 

when a = 23x4. (2.26 3) 

The corresponding solution to (2.17) has the form 

f - sin ~ i j +  H,  b[ij cos nij+ !j (1 - cos nij)] + O(H:) .  

One may observe from (2.14) that  the temperature disturbance can be written as 

(2.27) 

QX 
B = f(p) sin RX cos 7 ,  

Hi 
(2.28) 

where is found in (2.26b). If the condition m = dH,/(nH,);, derived from (2.16) 
and (2.263), is not met for a particular H I ,  then wave-fitting requirements imply that 
a will be altered by an O($) amount, and R by an O ( H i )  amount from the values 
in (2.26). 

These results show quite convincingly that the globally minimized (scaled) 
Rayleigh number in ( 2 . 2 6 ~ )  is associated with a three-dimensional convection pattern 
characterized by closely spaced finger-like cells. The motion itself can be obtained 
from the linear form of (2.1)-(2.3) combined with the transformations in (2.9)-(2.11). 
In the limit H,+O we find that the vertical component of velocity is given by 

e-- 
w N -*+O(&) ( 2 . 2 9 ~ )  

cosnij + O ( H i )  , (2.293) > I  
where ( 2 . 2 6 ~ )  and (2.28) have been used. At least t o  O ( H , ) ,  the vertical motion at 
a specified x-location is either purely upward or downward across the entire narrow 
dimension of the slab. The speed on the boundaries ij = 0 , l  is only O(H,)  relative to  
O( 1) values in the interior. As one varies the x-location for a fixed y-value, a closely 
spaced succession of upward- and downward-moving plumes is encountered. Given 
the transformation f2 = all;,, the width of these finger-like cells scales like the 
square root of the aspect ratio H ,  defined in (2.8d). 

One should note from (2.25) that  the modal configuration with respect to the 
x-direction, represented by the value of a, is extremely sensitive to  the R-value. When 
H ,  Q 1 a small variation in R i s  associated with a much larger change in a. In  this 
sense many modes near to that in (2.26) and (2.27) are almost as likely to appear. 

I n  a system similar to that in figure 1, but with fully insulated sidewalls, vertical 
energy transport dominates the stability process. The relevant Rayleigh number R, 
defined in (2.7b), depends on Lf2 for a specified temperature gradient ATlL' .  It is 
0(1) with respect to H,+O when convection occurs (for examples see Straus & 
Schubert 1978; Zebib & Kassoy 1977). I n  contrast, when sidewall heat loss is the 



Eflects of sidewall heat loss on convection 367 

dominating influence the relevant Rayleigh number is the scaled value E. Equations 
(2.76) and (2.11) can be combined to show that 

(2.30) 

which depends primarily on the slab width 2y: for a given temperature gradient. Here 
R = O( 1)  for H2 + O  at onset, while R = 0 ( H i 2 )  % 1. In  terms of the R-value at onset, 
sidewall heat loss is a strongly stabilizing influence. A locally destabilized fluid 
particle rising (falling) near the sidewall will be a little warmer (cooler) than the 
imposed boundary temperature. Localized boundary heat loss (gain) will cool (warm) 
the particle so that buoyancy-induced motion is retarded. When y; is sufficiently large 
convection will develop because fluid particles moving in the central portion of the 
slab are less readily affected by heat transfer to the boundaries. In  this sense one can 
understand the y-dependent part of the vertical speed distribution in (2.293), which 
is maximized on the centreline = 4. This argument can also be used to discount the 
likelihood of observing the two-dimensional roll motion given by Lowell & Shyu 
(1978), which would involve upflow along one wall and downflow along the other. 
Such a mode would require an improbably maximized buoyant force on the boundary 
where the stabilizing heat-transfer mechanism is most effective. 

The results of the present stability calculation, based on a fully three-dimensional 
model of convection, verify Murphy’s (1979) conclusions. The latter were obtained 
from an analysis of the reduced two-dimensional, spatially (y-dimension) averaged 
equations. One can now be confident in predicting that at the onset of convection 
closely spaced finger-like cells will appear. A weakly nonlinear analysis would be 
necessary to determine which modes appear when a is slightly larger than ac in 
(2.26a), given the modal sensitivity implied by (2.25). Only in this way can one 
account for neighbouring modal interactions. Lowell & Hernandez (1982) have 
generated numerical solutions for the configuration in figure 1 when the Rayleigh 
number R is five or more times the critical value. They find three-dimensional motion 
consisting of a few cells filling the entire slab in figure 1. The grid size employed 
precludes the possibility of resolving finger-like cells with a dimension like (&/L’)+ z:. 

Finally, it  should be noted that if a linear temperature distribution is prescribed 
on the endwalls, then the thermal condition in ( 2 . 8 ~ )  is replaced by T = 1 -TZ on 
x = 0, HI and the separable solution in (2.14) is not viable for all x when H ,  4 1. In  
this case the lowest-order solutions obtained in the previous calculation are correct 
except in the vicinity of the endwalls, where conduction in the x-direction must be 
significant. The boundary-layer scaling z = H2 5, valid near z = 0 for example, can 
be used in (2.12) to derive a &equation in which all the highest-order derivatives 
appear when H ,  + O .  Although a complete solution to the boundary-layer equation 
has not been obtained, it is easy to show that there is exponentially rapid decay to 
(2.14) as the edge (3+ &) is approached. The validity of this solution structure can 
be rationalized by considering the properties of side- and endwall heat loss. Equation 
(2.28) can be used to show that the net heat transfer to the entire sidewall vanishes. 
In  fact the net heat transfer from each finger-like cell face on the sidewalls vanishes. 
In  this sense the heat transfer to the sidewalls is highly localized as depicted in 
figure 2. Heat lost from the rising fluid in a cell is conducted through the boundary 
material and returned to the descending portion. The ratio of the characteristic 
localized sidewall heat transfer to that occuring across an endwall (due to the Z-thermal 
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FIGURE 2. In the side view of the slab two cells of wavelength H,/m are shown. As seen from above 
in the top view, heat is transferred from the rising fluid to the impermeable material and transferred 
back where the fluid descends. 

boundary layer) is O ( 4 )  for H 2 + 0 .  As a result endwall heat loss should not effect 
the basic convection structure in the slab, which is dominated by localized sidewall 
heat transfer. 

3. Finger-like cells in forced convection 
The complete three-dimensional solution for the configuration in figure 1 with mass 

input at the lower boundary can be obtained in principle from (2.1)-(2.3) and the 
boundary conditions 

w=wi=constant,  T = 1 + 7  ( z = - l ) ,  ( 3 . 1 ~ )  

u = O ,  T = ~ - T z  ( z = O , H 1 ) ,  (3.1 b )  

v = 0, T = 1 - 7 2  (y = 0 ,  H z ) .  ( 3 . 1 ~ )  

On the upper surface z = 0 very weak conditions on the gradients should be specified 
(Turcotte, Ribando & Torrance 1977) to allow for unrestrained fluid motion a t  the 
exit. Such a solution is desirable but difficult to obtain without a complete numerical 
computation. Instead we seek to develop the properties of fully developed solutions 
to the mathematical system, following the procedures initiated by Kassoy & Zebib 
(1978). In particular, it  will be demonstrated that under appropriate circumstances 
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three-dimensional, closely spaced, finger-like cells, induced by natural convection, 
will appear superimposed on the forced upflow in the slab. 

Kassoy & Zebib (1978) have described high-Rayleigh-number forced convective 
flow in a configuration like that in figure 1 when the solution is independent of the 
x variable. The temperature on the sidewalls increases linearly with depth. 
Consideration is given to the evolution of a hot isothermal slug flow injected below 
the bottom boundary z = - 1. An entry solution with thickening thermal boundary 
layers on the sidewalls is obtained. The subsequent approach of the flow to a fully 
developed configuration, compatible with the boundary conditions, is also described. 
A spatial stability analysis is used to show that fully developed solutions can be 
expected only for certain limited ranges of the governing parameters. Given 
conditions for a stable fully developed solution, the evolving flow is within 25 % of 
the fully developed value, within the upper 60% of the channel if the parameter 
y E &ye < in where R and ye are defined in (2.7b) and (2 .8d) .  A class of two- 
dimensional fully developed solutions containing regions of reverse flow is found to 
be spatially unstable when y 2 in. In order to determine what might actually appear 
in that circumstance, a fully developed solution for the three-dimensional equations 
is considered. In  the limit E = H 2 / H 1 + 0 ,  H ,  = 0 ( 1 )  the solution of the three- 
dimensional equations reduces to that for the two-dimensional equations only when 
y < in. When y+?jn- a fully three-dimensional solution is found. No results were 
presented for y 2 in. 

In order to extend the results to larger values of y ,  fully developed solutions to 
(2.1)-(2.3) must be found. In  this instance one considers a portion of the slab away 
from the upper and lower boundary, where, to a first approximation, u and v are much 
smaller than w. There w = w(x, y), T = 1 --7z+d(x, y) and p = p(z) .  For historical 
reasions it is most convenient to develop the solution in terms of the variables 

22 
f =---I , g=2g-1, (3.2) 

8 = 8(f, g) ,  w = w ( f ,  g ) ,  (3.3) 
Hl 

so that the boundary conditions are applied at f = f) = & 1. In terms of figure 1,  the 
coordinates in (3.2) are measured relative to an origin at x = !$Il, y = i H 2 ,  z = 0. 

3.1. Fully developed solution 

The mathematical system for the fully developed solution can be written in the form 

(3.4a, b) a , , + o p p + y 2 e  = - y k ,  e(ki ,g)  = qf, k i )  = 0, 

w(f,#) = k + 8(f, g), (3.5u-c) H2 

HI 
y = By, = O(1), € = -, 

where k is, in effect, the dimensionless slip velocity on the boundaries f = &- 1 , G  = & 1, 
which must be found. Solutions are to be found in the limit s+O such that y = O(1), 
which implies that R % 1. The assumption of fully developed flow reduces the full 
nonlinear system to a simple non-homogeneous linear partial differential equation 
with homogeneous boundary conditions. Since the fully developed solution is a 
reasonable representation only far from the top and bottom of the fault, the boundary 
condition in (3.1 a )  is irrelevant. Rather, a non-dimensional mass flux must be defined 
to account for the input of liquid a t  the bottom of the slab. This parameter is defined 
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where M' = 4xH y; ph wi is the mass flux entering the slab at  z = - 1 .  The solution is 
parametrically dependent upon M ,  which is a specified constant. 

The exact solution to (3.4)-(3.6) valid for all y $: 32n+ 1) x, k $: 0, n = 0, 1,2,  .. . 
has the form 

- 2 ~ 3  c tan (Kn/e)  

Y n-o G*n n-N+l  '",n 
(3.8) 

An = i(2n-t 1 )  x, 8, = ( h i -  y2$,  Kn = (y2-A2,):, (3.9) 

where the integer N is defined by the condition 3 2 N +  1)x  < y < +(2N+3)n. If, for 
example, y < in, a case treated by Kassoy & Zebib (1978), then N = - 1,  the first 
series in (3.7) and (3.8) are absent and the second series are summed from 0 to co. 
In the limit E + O  i t  was shown that 

W -  y M  cos yg (1 + O ( E ) )  + 0 ( exp [-pO'l-/h'l]), 121 < 1 .  (3.10) 
sin y 

The velocity profile is basically invariant along the x-direction, except in thin 
boundary layers adjacent to the walls at  2 = & 1. In the boundary layer defined by 
X = (1 - 12 I)/€ (3.7) reduces to 

m 
'OS (An  ') [cosh (p, 1) - sinh (P, a]} . 

cos yg 

n-o 

Equation (3.10) fails when y++x-. Instead, Kassoy & Zebib (1978) find that when 
y = i$-CYS(e),S = O ( h )  then k = O(s2) and 

(3.11) 

Here the solution has a parabolic distribution with respect to the plane of sidewalls 
while varying harmonically across the aperture ( -  1 < y < 1). Equation (3.11) is 
valid also for y++x + . 

It is of interest to note that (3.11) can be obtained directly from (3.4)-(3.6) for 
y = +x by employing a perturbation method directly. If 

( k ,  8 )  - ( k o ,  8 , ) + 4 k l ,  fQ+o(s4) 

is used in (3.4) and (3.5) then the solution for the 0, equation is 

0, = A($) cos (2&) +B(h)  sin (in$) - k,. 

The boundary conditions imply that A( f 1 )  = B(h) = k, = 0. To find A(h) the 8, and 
8, equations are combined to give 

a 
- (e, elG- el eoG) = - ry2k1 +A"($) cos;xgl 0,. 
a5 

Then by integrating across the aperture and employing the boundary conditions 
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(which is equivalent to invoking the orthogonality properties of do and 0,) it is found 
that A" = - k , n .  Finally 

satisfies the previously obtained conditions A( f 1)  = 0. When (3.6) is employed we 
find that k, = i M .  It follows from ( 3 . 5 ~ )  that the result in (3.11) is confirmed. In  
particular the o(1) term in (3.11) is clearly O(sa). 

When y > in but not equal to an odd multiple of in it is observed from (3.7) that 
there are components of the velocity field that vary sinusoidally with 2 with a 
frequency O( l/e). These spatially oscillatory variations in the plane of the sidewalls 
are associated with finger-like narrow vertical cells. 

When y is an odd multiple of in the flow pattern is dominated by a parabolic 
distribution in the plane of the fault. For example when y+:n (3.7) and (3.8) 
take the form 

A =ik,x( l -P)  

COB (? - t ~  -> +- & 9x cos cos(Ko/e) (KO 2/e) cos (~n~)+O( l ) ] ,  (3.12) 

e (3.13) 

One may observe that the amplitude of the finger-like cells is much smaller than the 
parabolic variation in the first term in (3.12). 

3.2. Graphical description of the results 
This subsection deals with the graphical representation of the results obtained 
previously. Owing to the inherent flow symmetry the vertical velocity w is drawn 
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Y k ( 6  = 0.1) k (6 = 0.01) 

in 0.797 9 0.7854 
c 0.6256 0.6066 
0.78 x in 0.471 0 0.447 2 
0.89 x in 0.2749 0.2488 
0.94 x in 0.156 0.132 
4. 0.015 0.OOO 15 

TABLE 1. Variation of k in the range 0 d y d in when B = 0.1 and 0.01 
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FIQURE 4. The vertical speed w as a function of 9 for &locations at 0, 0.5 and 1.0 when y = in. 

as a function o f f  for 0 < P < 1 and g for 0 < 8 < 1, for several values of y. M has 
been chosen equal to  unity, but i t  is noted that this parameter is simply a 
multiplicative constant used to determine the slip velocity k. 

The curves of the vertical velocity wlk  are shown in figure 3 with y = in for three 
values of $ and for two values of the geometrical parameter E = 0.1 and 0.01. It can 
be seen that, at the wall fj = 1, w is equal to the slip velocity k. When E = 0.1 it is 
observed that the solution is independent of I(: except in a relatively thin boundary 
layer adjacent to the endwalls. This boundary layer is very thin when E = 0.01. It 
is noted that, for each value of @ when P = & 1, w is equal to  the slip velocity k. Similar 
vertical velocity profiles can be found for y < in. 

I n  table 1, k has been calculated as a function of y in the range 0 < y < in. It may 
be observed that k is only weakly dependent on E and that k is an O( 1) quantity which 
decreases to 0 ( e 2 )  when y approaches in. When y+in-, the profound influence of 
natural convection affects the flow all along the $-dimension of the fault. Figure 4 
shows the parabolic behaviour of w when y = ?jn obtained from (3.1 1) for three values 
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FIQURE 5. The vertical speed w as a function of 2 for &locations at 0 ,0 .5  and 1.0 when y = @t and 
E = 0.1 (solid lines). The dashed horizontal lines represent the net upflow of fluid at the locations 
5 = 0,0.5. 

Y k ( e  = 0.1) k (E = 0.01) 

in 0.015 0.00015 
in - 1.407 -2.341 17 
R - 13.467 - 82.5665 
1.067t 15.9262 45.4453 
in 2.2664 4.154 
in 0.015 0.00015 

TABLE 2. Variation of k in the range 4% < y < $R when E = 0.1 and 0.01 

of g. The maximum amplitude of the parabolic behaviour is observed at $ = 0, and 
decreases to  a very small value as the wall is approached ($-+ l) ,  as shown in table 1. 

Figure 5 shows the variation of w for y = in, 8 = 0.1 a t  three $-locations. Spatially 
oscillating behaviour can be clearly observed. These curves define cells in the ( 2 , ~ ) -  
plane far from the top and bottom of the fault, with liquid flowing downward when 
w is negative and upward when w is positive. The amplitude of the oscillation is 
maximum at the centreline of the fault (9 = 0). At the wall w is constant and is equal 
to the slip velocity k shown in table 2. 

Results like those in figure 5 are found for &t < y < in. Steady convective rolls 
are observed everywhere in the system. In this case w is the superposition of a 
spatially oscillating component in 2 and an almost &independent term representing 
the net flux of liquid. In  figure 5 the dashed horizontal lines for y = 0 and 0.5 represent 
the positive net flow. The net flow is obtained from (3.7), with N = 0, by adding the 
first term and the remaining infinite series. However, the contributions from this 
series are negligible except in a very thin boundary layer close to the endwall2 = f 1. 
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FIGURE 6. The vertical speed w as a function of h for $-locations 
at 0, i, 4, 4, ?j and 1 when y = in. 

In  the range +x < y < $x table 2 shows that k is highly dependent on the 
geometrical parameter E .  It can also be observed that k changes sign when y is near 
to A. This effect can be obtained from (3.8) with N =  0. In  this equation the 
predominant term for calculating k is tan y ,  except when y is near to x. If y+x then 
the second term of (3.8), which is O(e) ,  prevails. Consequently k is a large number 
for y near to x. 

The sign of k can be explained by the fact that the total amount of mass M which 
is input at the bottom of the slab must flow upward. Consequently the average 
vertical velocity obtained by integrating w over the horizontal area must be positive. 
In (3.8) it can be seen that M is the sum of k tan y / y  which is an O(1) quantity except 
where y is near to x, and of a term O(E tan ( K O / € ) )  whose sign varies with KO/€, and 
of a series whose sum is smaller than the previous terms. That series can be neglected 
when E = 0.01. Consequently in the range < y < ix, except in a small neighbour- 
hood of x, the prevailing term used to calculate the net flow is k tan y /y .  It follows 
that, when +x < y c x, k must be negative in order to obtain a positive net flow. 
When x c y c $x, k must be positive. 

If one recalls from (3.4) and (3.5) that k represents the slip velocity on the vertical 
boundaries, then its changing value and sign can be understood on physical grounds. 
Differing internal distributions of w combined with the net mass flow constraint 
require that the slip speed adjust itself to an appropriate value. 

The leading terms in (3.12) and (3.13) have been used to construct the variation 
of w with 2 when y = $x and M = 1 as shown in figure 6. To a first approximation 
the result is invariant to e if E: 6 1 because klE2 = $M. It can be observed that for 

the liquid flows downward, while for l j j l  > f the fluid flows upward. The I < 
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FIGURE 7. The vertical speed w M a function of 2 for g-locations at 0 and 1.0 for y = in and 
E = 0.1 (solid line). The dashed line represents the average net flow at g = 0. 
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FIGURE 8. The vertical speed components W, and W, arising from purely oscillating terms in 
(3.7) for y = in and E = 0.1 at the location f) = 0. The dashed line is W, and the solid line is W,. 
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parabolic distribution is similar in appearance to that for y++n. The spatially 
oscillating term in (3.12) is almost negligible compared to the leading term. When 
2 = 0 the ratio of the maximum amplitude of those two terms is 3.4 x when 
e = 0.1 and 1.24 x when B = 0.01. For this reason the spatially oscillating term, 
whose period is 0.1414 when E = 0.1 and 0.0141 when E =  0.01, has not been 
represented on figure 6 .  Furthermore, table 2 shows that the slip velocity at the wall 
is very small. 

It is noted that for y > $R the same analysis can be performed. In  each interval 
[+(2k+ 1 )  R, 3 2 k +  3)n] an additional spatially oscillating term appears in the 
expression for w, with a smaller and smaller amplitude and a larger frequency relative 
to the first oscillating term discussed. Figure 7 shows the variation of w for y = in 
at the centreline i j  = 0 and on the wall 9 = 1. The velocity w has been obtained by 
adding an $-independent net flow with two oscillatory components, which are shown 
separately on figure 8. 

On figure 7 the dotted line represents the average net flow at ij = 0. It can be seen 
that a t  the centreline the average flow is downward and that in this case the flow 
profile becomes more complicated. It could also be shown that the average flow is 
upward for < i j  < f approximately, and downward in a thin boundary layer a t  
each wall. 

4. Discussion and conclusions 
The effect of sidewall heat loss on the character of natural convection in a saturated 

porous vertical slab has been described in the preceding sections for two apparently 
unrelated problems. The linear stability calculation for the closed system shows that 
the onset of convection occurs, in the form of closely spaced finger-like cells, when 

(4- 1) R, = H;' Rc = H i 2  [R' + H ,  2 % ~  + O(H31. 

Relative to the z-direction the cells have a wavelength 

obtained from (2.16) and (2.28). The vertical motion described by (2.293) exhibits 
a maximum induced speed in the centre of the slab (f = g) where the buoyant effect 
is maximized. 

In  the forced convection problem in the same geometrical configuration of figure 1, 
natural convection alters the 2-independent fully developed solution of Kassoy & 
Zebib (1978) when y = in. Now it should be noted from the definition of y in (3.5a), 
(2.8d) and (2.11) that 

(4.3) y2 = Ryg = +Rq = +E, 
which provides a parameter relationship between the two problems. For example 
when R =  n2, corresponding to y = in, the convection mode in (3.11) will prevail. 
That motion, characterized by the buoyant upwelling of fluid, maximized around 
2 = $ = 0 (5 = +HI ,  ij = t ) ,  appears to be unrelated to the finger-like cells in the linear 
stability problem. However, it should be noted in (4.1) that the critical scaled 
Rayleigh number is O(H2)  larger than x 2 .  If we evaluate (3.7)-(3.9) for 
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where P is a constant to be specified, then the only spatially oscillatory contribution 
is represented by the term 

One may observe that the wavelength relative to the z-direction is O @ ) ,  like that 
in the linear stability problem. The change in the character of the modal configuration 
from that in (3.11) to the narrow cells represented by (4.5) is the result of an O(H2) 
alteration in E. This extraordinary sensitivity of configuration to the scaled 
Rayleigh-number value is analogous to that in the linear stability result (2.25). It 
would appear that this kind of sensitivity is a characteristic of convection processes 
where sidewall heat loss is important. Further emphasis of this point arises from the 
observation that when y > in the limit H2 --f 0 (a > x 2 )  then KO = O( 1) in (4.5). 
In  this case the wavelength is reduced to O(H2) .  

There is a remarkable similarity in the value of the scaled Rayleigh number 
associated with the onset of convection cells in the two problems considered. One must 
remember of course that in the first problem the finger-like cells develop in a closed 
system, initially at rest. In the second problem the analysis is based only on a fully 
developed flow regime that might appear away from the top and bottom of the slab. 
When R <  x 2  the flow is basically invariant in the x-direction and varies in the 
$-direction, except in O(H,)-thick boundary layers adjacent to the endwalls. The 
stability issue here centres around the change in the configuration when Ris increased 
slightly. Except right at R = x2 we find finger-like cells superimposed on the overall 
specified upflow. Donaldson (1970) has observed a similar phenomenon in a planar 
configuration which might be thought of as representing a single finger-like cell. The 
results are obtained from a numerical computation of the complete planar equations 
rather than from a fully developed flow equation. 

The results obtained here certainly suggest that numerical computation of 
three-dimensional flow in a vertical-slab configuration must be carried out with 
sufficient spatial resolution to resolve very narrow cells. For example, in a system 
with H ,  = 0.01, the cell width is O ( 3 )  = O(O.l). If H, = 1 then somewhere between 
50 and 100 grid points are required in the plane of the sidewall to resolve the cells. 

The original physical motivation for this study arose from an interest in modelling 
heat and mass transfer in a model of a fault zone in the Earth’s crust (Kassoy & Zebib 
1978). In figure 1 the porous slab represents a crustal region that is fractured 
significantly by extensive tectonic activity. The impermeable boundary is a surface 
beyond which the neighbouring rock is essentially without permeability. In  the 
original model Kassoy & Zebib (1978) implied in effect that the temperature increased 
linearly with depth throughout the neighbouring impermeable rock as a result of 
vertical conductive heat transfer through the material. Murphy (1979) has pointed 
out that such a condition cannot prevail for long once vigorous convection in the 
porous material has begun. Heat transfer from the porous fault zone to the boundary 
material will alter the initial linear distribution on the sidewalls. Given the con- 
ductivity contrast between the saturated porous material and the impermeable rock, 
i t  is likely that the horizontal temperature gradient will gradually vanish as time 
passes. Relative to the present analysis, the sidewall heat loss could decrease until 
the conditions necessary to support finger-like cells ceased to exist. Presumably 
another hydrodynamic pattern would evolve. This suggests that a future study of 
the evolution of such a system would be valuable. 
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